
Preface 
Welcome to "Agentic Design Patterns: A Hands-On Guide to Building Intelligent 
Systems." As we look across the landscape of modern artificial intelligence, we see a 
clear evolution from simple, reactive programs to sophisticated, autonomous entities 
capable of understanding context, making decisions, and interacting dynamically with 
their environment and other systems. These are the intelligent agents and the agentic 
systems they comprise. 

The advent of powerful large language models (LLMs) has provided unprecedented 
capabilities for understanding and generating human-like content such as text and 
media, serving as the cognitive engine for many of these agents. However, 
orchestrating these capabilities into systems that can reliably achieve complex goals 
requires more than just a powerful model. It requires structure, design, and a thoughtful 
approach to how the agent perceives, plans, acts, and interacts. 

Think of building intelligent systems as creating a complex work of art or engineering on 
a canvas. This canvas isn't a blank visual space, but rather the underlying infrastructure 
and frameworks that provide the environment and tools for your agents to exist and 
operate. It's the foundation upon which you'll build your intelligent application, managing 
state, communication, tool access, and the flow of logic. 

Building effectively on this agentic canvas demands more than just throwing 
components together. It requires understanding proven techniques – patterns – that 
address common challenges in designing and implementing agent behavior. Just as 
architectural patterns guide the construction of a building, or design patterns structure 
software, agentic design patterns provide reusable solutions for the recurring problems 
you'll face when bringing intelligent agents to life on your chosen canvas. 

What are Agentic Systems? 
At its core, an agentic system is a computational entity designed to perceive its 
environment (both digital and potentially physical), make informed decisions based on 
those perceptions and a set of predefined or learned goals, and execute actions to 
achieve those goals autonomously. Unlike traditional software, which follows rigid, 
step-by-step instructions, agents exhibit a degree of flexibility and initiative. 

Imagine you need a system to manage customer inquiries. A traditional system might 
follow a fixed script. An agentic system, however, could perceive the nuances of a 
customer's query, access knowledge bases, interact with other internal systems (like 

1 



order management), potentially ask clarifying questions, and proactively resolve the 
issue, perhaps even anticipating future needs. These agents operate on the canvas of 
your application's infrastructure, utilizing the services and data available to them. 

Agentic systems are often characterized by features like autonomy, allowing them to 
act without constant human oversight; proactiveness, initiating actions towards their 
goals; and reactiveness, responding effectively to changes in their environment. They 
are fundamentally goal-oriented, constantly working towards objectives. A critical 
capability is tool use, enabling them to interact with external APIs, databases, or 
services – effectively reaching out beyond their immediate canvas. They possess 
memory, retain information across interactions, and can engage in communication 
with users, other systems, or even other agents operating on the same or connected 
canvases. 

Effectively realizing these characteristics introduces significant complexity. How does 
the agent maintain state across multiple steps on its canvas? How does it decide when 
and how to use a tool? How is communication between different agents managed? How 
do you build resilience into the system to handle unexpected outcomes or errors? 

Why Patterns Matter in Agent Development 
This complexity is precisely why agentic design patterns are indispensable. They are 
not rigid rules, but rather battle-tested templates or blueprints that offer proven 
approaches to standard design and implementation challenges in the agentic domain. 
By recognizing and applying these design patterns, you gain access to solutions that 
enhance the structure, maintainability, reliability, and efficiency of the agents you build 
on your canvas. 

Using design patterns helps you avoid reinventing fundamental solutions for tasks like 
managing conversational flow, integrating external capabilities, or coordinating multiple 
agent actions. They provide a common language and structure that makes your agent's 
logic clearer and easier for others (and yourself in the future) to understand and 
maintain. Implementing patterns designed for error handling or state management 
directly contributes to building more robust and reliable systems. Leveraging these 
established approaches accelerates your development process, allowing you to focus 
on the unique aspects of your application rather than the foundational mechanics of 
agent behavior. 

This book extracts 21 key design patterns that represent fundamental building blocks 
and techniques for constructing sophisticated agents on various technical canvases. 

2 



Understanding and applying these patterns will significantly elevate your ability to 
design and implement intelligent systems effectively. 

Overview of the Book and How to Use It 
This book, "Agentic Design Patterns: A Hands-On Guide to Building Intelligent 
Systems," is crafted to be a practical and accessible resource. Its primary focus is on 
clearly explaining each agentic pattern and providing concrete, runnable code examples 
to demonstrate its implementation. Across 21 dedicated chapters, we will explore a 
diverse range of design patterns, from foundational concepts like structuring sequential 
operations (Prompt Chaining) and external interaction (Tool Use) to more advanced 
topics like collaborative work (Multi-Agent Collaboration) and self-improvement 
(Self-Correction). 

The book is organized chapter by chapter, with each chapter delving into a single 
agentic pattern. Within each chapter, you will find: 

●​ A detailed Pattern Overview providing a clear explanation of the pattern and its 
role in agentic design. 

●​ A section on Practical Applications & Use Cases illustrating real-world 
scenarios where the pattern is invaluable and the benefits it brings. 

●​ A Hands-On Code Example offering practical, runnable code that demonstrates 
the pattern's implementation using prominent agent development frameworks. 
This is where you'll see how to apply the pattern within the context of a technical 
canvas. 

●​ Key Takeaways summarizing the most crucial points for quick review. 
●​ References for further exploration, providing resources for deeper learning on 

the pattern and related concepts. 

While the chapters are ordered to build concepts progressively, feel free to use the book 
as a reference, jumping to chapters that address specific challenges you face in your 
own agent development projects. The appendices provide a comprehensive look at 
advanced prompting techniques, principles for applying AI agents in real-world 
environments, and an overview of essential agentic frameworks. To complement this, 
practical online-only tutorials are included, offering step-by-step guidance on building 
agents with specific platforms like AgentSpace and for the command-line interface. The 
emphasis throughout is on practical application; we strongly encourage you to run the 
code examples, experiment with them, and adapt them to build your own intelligent 
systems on your chosen canvas. 

3 



A great question I hear is, 'With AI changing so fast, why write a book that could be 
quickly outdated?' My motivation was actually the opposite. It's precisely because things 
are moving so quickly that we need to step back and identify the underlying principles 
that are solidifying. Patterns like RAG, Reflection, Routing, Memory and the others I 
discuss, are becoming fundamental building blocks. This book is an invitation to reflect 
on these core ideas, which provide the foundation we need to build upon. Humans need 
these reflection moments on foundation patterns 

Introduction to the Frameworks Used 
To provide a tangible "canvas" for our code examples (see also Appendix), we will 
primarily utilize three prominent agent development frameworks. LangChain, along with 
its stateful extension LangGraph, provides a flexible way to chain together language 
models and other components, offering a robust canvas for building complex sequences 
and graphs of operations. Crew AI provides a structured framework specifically 
designed for orchestrating multiple AI agents, roles, and tasks, acting as a canvas 
particularly well-suited for collaborative agent systems. The Google Agent Developer 
Kit (Google ADK) offers tools and components for building, evaluating, and deploying 
agents, providing another valuable canvas, often integrated with Google's AI 
infrastructure. 

These frameworks represent different facets of the agent development canvas, each 
with its strengths. By showing examples across these tools, you will gain a broader 
understanding of how the patterns can be applied regardless of the specific technical 
environment you choose for your agentic systems. The examples are designed to 
clearly illustrate the pattern's core logic and its implementation on the framework's 
canvas, focusing on clarity and practicality. 

By the end of this book, you will not only understand the fundamental concepts behind 
21 essential agentic patterns but also possess the practical knowledge and code 
examples to apply them effectively, enabling you to build more intelligent, capable, and 
autonomous systems on your chosen development canvas. Let's begin this hands-on 
journey! 

4 


	Preface 
	What are Agentic Systems? 
	Why Patterns Matter in Agent Development 
	Overview of the Book and How to Use It 
	Introduction to the Frameworks Used 

